Top

Charlotte A. E. Hauser

Professor, Bioscience 
Biological and Environmental Science and Engineering Division


Laboratory of Nanomedicine

Affiliations

Education Profile

  • Ph.D., University of Cologne, Germany and Massachusetts Institute of Technology (MIT), Cambridge, USA, 1990​
  • ​M.Sc., Chemistry, University of Cologne, 1986
  • B.Sc., Chemistry, University of Cologne, Germany, 1983
  • B.Sc., Physics, University of Cologne, Germany,1980

Research Interests

Professor Hauser’s research interests align at the interfaces between chemistry, biomedicine, bioengineering and nanotechnology. Focus is on the development of platform technologies, using smart nanomaterials for regenerative, biomedical and environmental applications.

Her interest refers to the rational molecular design, synthesis and mechanistic understanding of novel supramolecular structures. Investigated systems include peptide-based nanostructures with an innate propensity to self-assemble to biomimetic architectures applicable for biomedical applications such as cell substrates, sensors and 3D tissue scaffolds for regenerative medicine. Bottom-up nanofabrication is a powerful tool for the development of functional tissue equivalents, organotypic tissues and devices. Moreover, these biomimetic supramolecular constructs will be used for the design and fabrication of novel organ-on-a-chip devices and disease models.

Furthermore, Professor Hauser is interested in 3D bioprinting, using supramolecular organotypic constructs to fabricate high-throughput platforms for drug screening, pathogen detection and other diagnostic purposes. Synthetic biology approaches are explored for the generation of functional biomaterial.

Selected Publications

  • Y. Loo, A. Lakshmanan, M. Ni, L. L. Toh, S. Wang and C. A. E. Hauser, “Peptide Bioink: Self-Assembling Nanofibrous Scaffolds for Three-Dimensional Organotypic Cultures,” Nano Letters, 15 (2015) 6919-6925.
  • Y. Loo, Y. C. Wong, E. Z. Cai, C. H. Ang, A. Raju, A. Lakshmanan, A. G. Koh, H. J. Zhou, T. C. Lim, S. M. Moochhala and C. A. E. Hauser, "Ultrashort peptide nanofibrous hydrogels for the acceleration of healing of burn wounds," Biomaterials, 35 (2014) 4805-4814.
  • M. R. Reithofer, A. Lakshmanan, A. T. K. Ping, J. M. Chin and C. A. E. Hauser, “In situ Synthesis of Size-Controlled, Stable Silver Nanoparticles within Ultrashort Peptide Hydrogels and their Anti-Bacterial Properties,” Biomaterials, 35 (2014) 7535-7542.
  • M. R. Reithofer, K. H. Chan, A. Lakshmanan, D. H. Lam, A. Mishra, B. Gopalan, M. Joshi, S. Wang, and C. A. E. Hauser, "Ligation of Anti-Cancer Drugs to Self-Assembling Ultrashort Peptides by Click Chemistry for Localized Therapy," Chemical Science, 5 (2014) 625-630.
  • W. Y. Seow and C. A. E. Hauser, "Tunable Mechanical Properties of Ultrasmall Peptide Hydrogels by Crosslinking and Functionalization to Achieve the 3D Distribution of Cells," Advanced Healthcare Materials, 2 (2013) 1219-1223.
  • A. Lakshmanan, D. W. Cheong, A. Accardo, E. Di Fabrizio, C. Riekel, and C. A. E. Hauser, "Aliphatic Peptides Show Similar Self-Assembly to Amyloid Core Sequences, Challenging the Importance of Aromatic Interactions in Amyloidosis," Proceedings of the National Academy of Sciences, 110 (2013) 519-524.
  • A. Lakshmanan, S. Zhang, C. A. E. Hauser, "Short Self-Assembling Peptides as Building Blocks for Modern Nanodevices," Trends in Biotechnology, 30 (2011) 155-165.
  • A. Mishra, Y. Loo, R. Deng, Y. J. Chuah, H. T. Hee, J. Y. Ying and C. A. E. Hauser, "Ultrasmall Natural Peptides Self-Assemble to Strong Temperature-Resistant Helical Fibers in Scaffolds Suitable for Tissue Engineering," NanoToday, 6 (2011) 232-239.
  • C. A. E. Hauser, R. Deng, A. Mishra, Y. Loo, U. Khoe, F. Zhuang, D. W. Cheong, A. Accardo, M. B. Sullivan, C. Riekel, J. Y. Ying, and U. A. Hauser, "Natural Tri- to Hexapeptides Self-Assemble in Water to Amyloid β-type Fiber Aggregates by Unexpected α-Helical Intermediate Structures," Proceedings of the National Academy of Sciences, 108 (2011) 1361-1366.