

# Seismic Imaging - Course Syllabus

#### Course Number: ErSE 260

Course Title: Seismic Imaging

| Academic Semester:   | Spring        |
|----------------------|---------------|
| Semester Start Date: | Jan, 24, 2016 |

Academic Year: Semester End Date: 2015/ 2016 May, 19, 2016

Class Schedule: Monday and Wendesday 1-2:30PM

**Classroom Number:** 

| Instructor(s) Name(s):   | Tariq Alkhalifah              |
|--------------------------|-------------------------------|
| Email:                   | tariq.alkhalifah@kaust.edu.sa |
| Teaching Assistant name: | Nabil                         |
| Email:                   | ramzi.djebbi@kaust.edu.sa     |

**Office Location:** Building 1 Third floor room 3308 **Office Hours:** Monday and Wendesday 3-4

### **COURSE DESCRIPTION FROM PROGRAM GUIDE**

Seismic migration methods are developed. Green's theorem is used to derive the Lippmann-Schwinger equation and the following migration methods: phase-shift migration, split-step and PSPI migrations, Fourier Finite Difference migration, phaseencoded multi-source migration, Kirchhoff migration, beam migration, diffraction stacK migration, reverse time migration, and migration velocity analysis.

#### **COMPREHENSIVE COURSE DESCRIPTION**

We introduce the concept of seismic imaging in the framework of wavefield extrapolation and the imaging condition. We look at the various migration methods including Kirchhoff, phase-shift migration, Downward continuation methods, reverse time migration and others. We look at the impact of velocity and the role of imaging in estimating the velocity model.

This course is devoted to the concept of seismic imaging for exploration purposes. We introduce seismic imaging in the framework of Green's functions and wavefield extrapolation and discuss the various imaging conditions. We look at the various migration methods including Kirchhoff, phase-shift migration, Downward continuation methods, reverse time migration, and others. We discuss the role that velocity plays in the seismic imaging process.

# Proposed Course Schedule :

| Week                                    | Торіс                                         | Reading             |                 |
|-----------------------------------------|-----------------------------------------------|---------------------|-----------------|
| Week 1 (Jan. 27th)                      | Introduction to Seismic Imaging CN            | J-Chapt1, TSI(p1-5) | )               |
| Week 2 (Feb. 3st)                       | Wavefields and Wave propagation               | CN-Chapt2           |                 |
| Week 3 (Feb. 10th)<br>TSI(p7-9, p91-94) | Modeling and the forward proble               | m-exploding reflect | tor CN-Chapt4,  |
| Week 4 (Feb. 17th)                      | Modeling exercise and assignment              |                     |                 |
| Week 5 (Feb. 24rd)                      | Wavefields to Wavefronts CN-Cha               | pt3, TSI(p77-88)    |                 |
| Week 6 (Mar. 3rd) and the imaging cor   | The concept of seismic imaging- the<br>dition | adjoint CN-Chapt    | 5, TSI(p98-101) |
| Week 7 (Mar. 11th)<br>114)              | Integral Imaging methods - Kirchhof           | f CN-Chapt7, TSI(c  | hapt.8, p111-   |
| Week 8 (Mar. 18th)<br>TSI(p115-118)     | Time migration and Zero-offset to P           | restack             | CN-Chapt6,      |
| Week (Mar. 25nd)                        | Imaging in the Fourier domain - Mid           | term Exam           |                 |
| Week 9 (April 1st) S                    | pring Break                                   |                     |                 |
| Week 10 (Apr. 8th) \<br>TSI(p119-126)   | Wave equation methods and Downv               | vard continuation   | CN-Chapt9,      |
| Week 11 (Apr. 15th)                     | Reverse time migration (RTM) CN               | -Chapt10, TSI(p183  | 3-188)          |
| Week 12 (Apr. 22nd                      | ) The velocity issue, image/angle ga          | athers and MVA CN   | N-Chapt11       |
| Week 13 (Apr. 29th)                     | The DSR formulation and Wide and              | d Full azimuth      |                 |
| Week 14 (May 5th)                       | Waveform inversion CN-Chapt12                 |                     |                 |
| Week 15 (May 12th)                      | Review                                        |                     |                 |
| Week 16 (May 19th)                      | Final exams                                   |                     |                 |

# GOALS AND OBJECTIVES

To understand the physics behind Seismic imaging and gain knowledge on the methods available to do so.

### REQUIRED KNOWLEDGE

Seismology 1 or equivalent

# **REFERENCE TEXTS**

- 1-Course notes
- 2-Theory of Seismic imaging, John Scales, available free online

# METHOD OF EVALUATION

| Percentages<br>% | Graded content                                                                                                                                                              |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 50%              | Exams will represent 50% of the final course grade.<br>There will be one midterm exam and one (final) exam in the<br>lecture part of the course.                            |
| 50%              | Homework and a final project will represent the remaining 50% of the final course grade and will consist of a series of Sage and Madagascar open source package excersizes. |

### COURSE REQUIREMENTS

#### Assignments

Described above

#### **Course Policies**

Described above

### **Additional Information**

https://sites.google.com/a/kaust.edu.sa/erse260/

http://www.reproducibility.org/wiki/Main\_Page

### NOTE

The instructor reserves the right to make changes to this syllabus as necessary.